The Recombination Project: Analyzing Recombination Frequencies Using Crowdsourced Data

Blaine T. Bettinger, Ph.D., J.D.
The Genetic Genealogist (www.TheGeneticGenealogist.com)
February 20, 2017

ABSTRACT

The Recombination Project examines the recombination that occurs during a single maternal meiosis. By comparing the autosomes and X chromosome of a grandchild to his or her maternal grandmother or grandfather, the recombination events that occurred during the formation of the egg that would become the grandchild can be identified. Using the popular third-party tool GEDmatch (www.gedmatch.com), recombination events in 250 grandchild/grandparent comparisons – crowdsourced from genetic genealogists – were visualized and quantified. Observed recombination frequencies for the autosomes and X chromosome were calculated and compared to expected recombination frequencies. I find a mean maternal genome-wide recombination frequency of 40.8, which aligns very well with previous studies. The data also suggests that recombination occurs with greater frequency than expected based on the Poisson distribution. I also find that in 96% of recombinations, at least one autosome was inherited without undergoing recombination, and in one example a total of 10 chromosomes were inherited without recombination. The data also shows that the smallest autosomes, 21 and 22, are often inherited from a grandmother or grandfather without recombination (43.6% and 37.2% of recombinations, respectively). This may have an impact on IBD matching on chromosomes 21 and 22.

1. INTRODUCTION

Understanding recombination is one of the most important aspects of autosomal DNA analysis for ancestry comparison. The growing size of autosomal DNA databases allows for the collection and analysis of recombination on a massive scale. Although there are several studies examining recombination frequencies per genome per meiosis, there are few if any studies reporting recombination frequencies per chromosome per meiosis.

The Recombination Project has its roots in a previous crowdsourced project, the X-DNA Inheritance Project. Genealogists using DNA evidence often view the X chromosome as being fundamentally different from the autosomes. Although the inheritance pattern of the X chromosome is significantly different, it was previously unclear whether the recombination frequency of the X chromosome was significantly different from recombination frequency of the autosomes. As the X-DNA Inheritance Project progressed, it became clear that without understanding the recombination frequencies of the autosomes, it was not possible to understand how the X chromosome might vary from those frequencies. Unfortunately, this information was not readily identified following a literature search. Accordingly, the Recombination Project was
created to study recombination frequencies of all autosomes and the X chromosome. Because the Recombination Project has its roots in the study of the X chromosome, the data collected for analysis was from maternal grandparents only.

During recombination, chromosomal crossover can occur between any of the four chromatids (two sister chromatids and two non-sister chromatids). Since crossover events between sister chromatids cannot be detected using the methods described here, this report only examines recombination events between non-sister chromatids. Indeed, most recombination studies examine only recombination between non-sister chromatids.

2. METHODS

Data Collection

Data was collected from participants using Google Forms, which collected the submissions into a spreadsheet. The Google Form (available at https://goo.gl/forms/gg2n9SSUUKQSt5KG3) contained data entry fields for: (i) Grandchild’s GEDmatch kit number; (ii) Maternal grandfather’s GEDmatch kit number; (iii) Maternal grandmother’s GEDmatch kit number; (iv) Permission to use the One-to-One and X One-to-One tools to analyze the data; (v) Request for acknowledgement that all individuals associated with the provided GEDmatch kit numbers have provided consent for the project.

A total of 280 submissions were made to the Recombination Project as of February 20, 2017 (beginning January 19, 2017). For analysis, the submissions were downloaded as an Excel spreadsheet.

Data Curation

Submissions without permission to use the One-to-One and X One-to-One tools to analyze the data, and submissions without acknowledgement that all individuals associated with the provided GEDmatch kit numbers have provided consent for the project, were removed from the project. Additionally, several submissions revealed no relationship between the alleged grandchild and grandparent, while several submissions shared X-DNA but no autosomal DNA. These submissions were removed from the project.

The first 250 usable submissions were used for the analysis described herein.

Identification of Recombination Points

Autosomal DNA recombination events were identified by comparing the grandchild’s DNA to one grandparent’s DNA using the One-to-One tool at GEDmatch (www.gedmatch.com). Although numerous submissions included both maternal grandparents, only one grandparent was used for analysis. Since both grandparents were maternal, it was expected that the recombination profiles would be mirror images of each other. For example, as shown in FIG. 1 (permission provided), the number of recombination events is the same whether using the maternal grandfather or the maternal grandmother. Spot checking of several submissions confirmed this pattern.
FIG. 1. The maternal grandmother and maternal grandfather compared to chromosome 1 of a grandchild.

The default settings for the One-to-One tool were used, including the minimum matching segment size of 7 cM and the minimum threshold of 500 SNPs.

The number of recombination events per chromosome were recorded. As shown in FIG. 2 (permission provided), the output of the One-to-One tool at GEDmatch visually shows segments larger than 7 cM that are shared by the grandparent and the grandchild. Recombination points occur at the end(s) of a matching segment. For example, in FIG. 2, chromosome 1 underwent four (4) recombination events, chromosome 2 underwent four (4) recombination events, and chromosome 3 underwent no recombination.

If the size of a matching segment is below 7 cM, it will not be identified in this comparison. While it is not expected that a single meiosis will produce many internal segments smaller than 7 cM due to recombination interference, it is possible that these segments may be produced at the ends of the chromosomes.

FIG. 2. Identifying recombination points in the first five chromosomes of a grandparent/grandchild comparison using the One-to-One tool at GEDmatch.

Similarly, X chromosome recombination events were identified by comparing the grandchild’s DNA to one grandparent’s DNA using the X One-to-One tool at GEDmatch. Only one grandparent was used for analysis. The default settings for the X One-to-One tool were used, including the minimum matching segment size of 7 cM. The number of recombination events per chromosome were recorded.
Calculation of Expected Recombination Frequencies

Expected recombination frequencies were calculated using a Poisson distribution calculator. The Poisson distribution is a probability distribution that expresses the probability that a given number of events (i.e., recombination) occurring in a specified interval (i.e., distance) if the events occur independently with a known average rate.

To calculate the Poisson distribution of recombination events occurring for each chromosome, the length of that chromosome in Morgans was used as \(\lambda \), the average number of events per interval. The length of each chromosome was derived from the chart at http://isogg.org/wiki/CentiMorgan, using the numbers for GEDmatch. Since these measurements are in centiMorgans, the length of each chromosome was divided by 100 and the resulting number was used as \(\lambda \). For example, the length of chromosome 1 is 281.5 cM, and thus \(\lambda \) for chromosome 1 was 2.815.

The Poisson distribution of between 0 and 8 recombination events (random variable \(x \)) occurring for each chromosome was calculated.

3. RESULTS AND DISCUSSION

In total, 5,750 chromosomes were analyzed and 10,612 recombination points were identified in the 250 grandparent/grandchild comparisons.

Table 1 contains the minimum number of recombination events per chromosome, the average number of recombination events per chromosome, and the maximum number of recombination events per chromosome. Since the frequency of recombination is dependent upon the length of the chromosome, the size of each chromosome in centiMorgans is also provided in the table.

As shown in Table 1, it is possible to inherit one or more chromosomes without recombination. Although chromosome 1 is 3.55 times larger

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>MIN</th>
<th>AVG</th>
<th>MAX</th>
<th>Size (cM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3.312</td>
<td>8</td>
<td>281.5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3.144</td>
<td>6</td>
<td>263.7</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2.668</td>
<td>6</td>
<td>224.2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2.644</td>
<td>7</td>
<td>214.4</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2.436</td>
<td>6</td>
<td>209.3</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2.404</td>
<td>6</td>
<td>194.1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>2.172</td>
<td>5</td>
<td>187</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2.076</td>
<td>7</td>
<td>169.2</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1.868</td>
<td>5</td>
<td>167.2</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1.924</td>
<td>4</td>
<td>174.1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1.848</td>
<td>5</td>
<td>161.1</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>176</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>1.372</td>
<td>6</td>
<td>131.9</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1.308</td>
<td>3</td>
<td>125.2</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>1.436</td>
<td>5</td>
<td>132.4</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1.432</td>
<td>5</td>
<td>133.8</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>1.588</td>
<td>4</td>
<td>137.3</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>1.436</td>
<td>4</td>
<td>129.5</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>1.128</td>
<td>3</td>
<td>111.1</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>1.184</td>
<td>4</td>
<td>114.8</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0.652</td>
<td>3</td>
<td>70.1</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0.76</td>
<td>3</td>
<td>79.1</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>1.655</td>
<td>5</td>
<td>196</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chromosomes</th>
<th>MIN</th>
<th>AVG</th>
<th>MAX</th>
<th>Size (cM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>17</td>
<td>40.792</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Minimum, average, and maximum number of recombination events per chromosome.
than chromosome 22, for example, it is still possible to inherit chromosome 1 without it undergoing recombination.

The maximum number of recombination events for all chromosomes was eight (8) for chromosome 1, although this was rare. Out of the 250 analyses of chromosome 1, only one of them experienced eight (8) recombination events.

The average number of maternal genome-wide recombination events per meiosis was 40.8, with a low of 17 events and a high of 66 events. FIG. 3 shows the distribution of maternal genome-wide recombination events per meiosis.

FIG. 3. Distribution of maternal genome-wide recombination events per meiosis.

Mean maternal genome-wide recombination of 40.8 aligns very well with previous studies. For example, Chowdhury et al. found an average number of maternal recombinations per meiosis of 41.1 (95% CI: 39.9–42.4) and 42.8 (95% CI: 42.4–43.3) using two different datasets.

I also wanted to determine how often children inherit autosomes without recombination. While it is known that autosomes can be inherited without recombination, it was not clear how often this occurs, especially not on a per-chromosome basis.

As shown in FIG. 4, approximately 4% of recombinations resulted in every one of the autosomes experiencing at least one recombination event. Accordingly, in 96% of recombinations, at least one autosome was inherited without undergoing recombination. Typically between 1 and 6 chromosomes were inherited without undergoing recombination. However, in 6 recombinations...
(2.4%), there were 7 or more chromosomes inherited without undergoing recombination. The maximum found in this dataset was 10 chromosomes inherited without recombination.

FIG. 4. Frequency of non-recombination of autosomes per meiosis.

FIG. 5. Frequency of Inheriting a Chromosome Without Recombination.
As expected, the probability of inheriting an entire chromosome without recombination increased as the size of the chromosome decreased. While only 1.2% of chromosome 1 were inherited without recombination (size = 218.5 cM), a total of 43.6% of chromosome 20 were inherited without recombination (size = 70.1 cM). One wonders if, and how, this might affect matching and inheritance of IBD segments on chromosomes 21 and 22, which could have an impact on these IBD segments for use in ancestry DNA.

FIG. 6. Expected Versus Actual Frequency of Inheriting a Chromosome Without Recombination.

Except for the X chromosome, the frequency of inheriting a chromosome without recombination was well below the expected value. This may suggest that, as expected, crossover is actively favored during recombination. The values for actual and expected frequencies of 0 recombination events can be found in the tables below.
Table 2 contains the observed number of recombination events per chromosome, expressed as a percentage of the 250 observed copies of each chromosome experiencing between 0 and 8 recombinations (where 8 was the maximum number of recombination events seen for any chromosome in the study.

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Observed Number of Recombination Events Per Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1.2%</td>
</tr>
<tr>
<td>2</td>
<td>2.0%</td>
</tr>
<tr>
<td>3</td>
<td>4.8%</td>
</tr>
<tr>
<td>4</td>
<td>2.4%</td>
</tr>
<tr>
<td>5</td>
<td>7.2%</td>
</tr>
<tr>
<td>6</td>
<td>6.0%</td>
</tr>
<tr>
<td>7</td>
<td>8.8%</td>
</tr>
<tr>
<td>8</td>
<td>7.2%</td>
</tr>
<tr>
<td>9</td>
<td>8.4%</td>
</tr>
<tr>
<td>10</td>
<td>7.2%</td>
</tr>
<tr>
<td>11</td>
<td>13.2%</td>
</tr>
<tr>
<td>12</td>
<td>10.0%</td>
</tr>
<tr>
<td>13</td>
<td>17.6%</td>
</tr>
<tr>
<td>14</td>
<td>17.6%</td>
</tr>
<tr>
<td>15</td>
<td>13.6%</td>
</tr>
<tr>
<td>16</td>
<td>15.2%</td>
</tr>
<tr>
<td>17</td>
<td>12.8%</td>
</tr>
<tr>
<td>18</td>
<td>14.4%</td>
</tr>
<tr>
<td>19</td>
<td>23.6%</td>
</tr>
<tr>
<td>20</td>
<td>20.8%</td>
</tr>
<tr>
<td>21</td>
<td>43.6%</td>
</tr>
<tr>
<td>22</td>
<td>37.2%</td>
</tr>
<tr>
<td>X</td>
<td>14.0%</td>
</tr>
</tbody>
</table>

TABLE 2. The Observed Number of Recombination Events Per Chromosome.
Table 3 contains the *expected* number of recombination events per chromosome, based on a Poisson distribution.

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Expected Number of Recombination Events Per Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6.0%</td>
</tr>
<tr>
<td>2</td>
<td>7.2%</td>
</tr>
<tr>
<td>3</td>
<td>10.6%</td>
</tr>
<tr>
<td>4</td>
<td>11.7%</td>
</tr>
<tr>
<td>5</td>
<td>12.3%</td>
</tr>
<tr>
<td>6</td>
<td>14.4%</td>
</tr>
<tr>
<td>7</td>
<td>15.4%</td>
</tr>
<tr>
<td>8</td>
<td>18.4%</td>
</tr>
<tr>
<td>9</td>
<td>18.8%</td>
</tr>
<tr>
<td>10</td>
<td>17.5%</td>
</tr>
<tr>
<td>11</td>
<td>20.0%</td>
</tr>
<tr>
<td>12</td>
<td>17.2%</td>
</tr>
<tr>
<td>13</td>
<td>26.7%</td>
</tr>
<tr>
<td>14</td>
<td>28.6%</td>
</tr>
<tr>
<td>15</td>
<td>26.6%</td>
</tr>
<tr>
<td>16</td>
<td>26.2%</td>
</tr>
<tr>
<td>17</td>
<td>25.3%</td>
</tr>
<tr>
<td>18</td>
<td>27.4%</td>
</tr>
<tr>
<td>19</td>
<td>32.9%</td>
</tr>
<tr>
<td>20</td>
<td>31.7%</td>
</tr>
<tr>
<td>21</td>
<td>49.6%</td>
</tr>
<tr>
<td>22</td>
<td>45.3%</td>
</tr>
<tr>
<td>X</td>
<td>14.10%</td>
</tr>
</tbody>
</table>

TABLE 3. The Expected Number of Recombination Events Per Chromosome.
Table 4 contains the difference between the *observed* number of recombination events per chromosome and the *expected* number of recombination events per chromosome (observed – expected).

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4.8%</td>
<td>-8.9%</td>
<td>-4.1%</td>
<td>4.9%</td>
<td>9.1%</td>
<td>4.8%</td>
<td>0.3%</td>
<td>-0.9%</td>
<td>-0.2%</td>
</tr>
<tr>
<td>2</td>
<td>-5.2%</td>
<td>-10.5%</td>
<td>-2.9%</td>
<td>7.7%</td>
<td>6.0%</td>
<td>6.4%</td>
<td>0.3%</td>
<td>-1.3%</td>
<td>-0.5%</td>
</tr>
<tr>
<td>3</td>
<td>-5.8%</td>
<td>-9.0%</td>
<td>0.9%</td>
<td>6.0%</td>
<td>6.8%</td>
<td>1.0%</td>
<td>0.9%</td>
<td>-0.6%</td>
<td>-0.2%</td>
</tr>
<tr>
<td>4</td>
<td>-9.3%</td>
<td>-5.1%</td>
<td>-2.9%</td>
<td>9.2%</td>
<td>6.5%</td>
<td>2.4%</td>
<td>-0.4%</td>
<td>-0.1%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>5</td>
<td>-5.1%</td>
<td>-7.0%</td>
<td>0.2%</td>
<td>6.0%</td>
<td>5.7%</td>
<td>0.7%</td>
<td>0.2%</td>
<td>-0.4%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>6</td>
<td>-8.4%</td>
<td>-12.3%</td>
<td>8.2%</td>
<td>8.1%</td>
<td>3.5%</td>
<td>0.7%</td>
<td>0.5%</td>
<td>-0.3%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>7</td>
<td>-6.6%</td>
<td>-6.8%</td>
<td>2.7%</td>
<td>8.8%</td>
<td>2.9%</td>
<td>0.3%</td>
<td>-0.9%</td>
<td>-0.2%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>8</td>
<td>-11.2%</td>
<td>-5.2%</td>
<td>6.8%</td>
<td>9.1%</td>
<td>0.1%</td>
<td>-0.1%</td>
<td>0.2%</td>
<td>0.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>9</td>
<td>-10.4%</td>
<td>1.8%</td>
<td>2.1%</td>
<td>9.8%</td>
<td>-1.7%</td>
<td>-0.8%</td>
<td>-0.6%</td>
<td>-0.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>10</td>
<td>-10.3%</td>
<td>0.7%</td>
<td>5.4%</td>
<td>5.8%</td>
<td>1.7%</td>
<td>-2.3%</td>
<td>-0.7%</td>
<td>-0.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>11</td>
<td>-6.8%</td>
<td>-2.2%</td>
<td>3.3%</td>
<td>4.1%</td>
<td>0.0%</td>
<td>2.2%</td>
<td>-0.5%</td>
<td>-0.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>12</td>
<td>-7.2%</td>
<td>-4.3%</td>
<td>4.2%</td>
<td>7.2%</td>
<td>1.1%</td>
<td>0.0%</td>
<td>-0.7%</td>
<td>-0.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>13</td>
<td>-9.1%</td>
<td>5.1%</td>
<td>7.9%</td>
<td>-0.6%</td>
<td>-2.6%</td>
<td>-0.9%</td>
<td>0.2%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>14</td>
<td>-11.0%</td>
<td>5.8%</td>
<td>10.8%</td>
<td>-1.8%</td>
<td>-2.9%</td>
<td>-0.7%</td>
<td>-0.2%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>15</td>
<td>-13.0%</td>
<td>8.0%</td>
<td>7.5%</td>
<td>0.9%</td>
<td>-2.6%</td>
<td>-0.5%</td>
<td>-0.2%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>16</td>
<td>-11.0%</td>
<td>6.1%</td>
<td>7.3%</td>
<td>0.7%</td>
<td>-2.3%</td>
<td>-0.5%</td>
<td>-0.2%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>17</td>
<td>-12.5%</td>
<td>-1.6%</td>
<td>14.9%</td>
<td>1.9%</td>
<td>-1.4%</td>
<td>-1.0%</td>
<td>-0.2%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>18</td>
<td>-13.0%</td>
<td>4.9%</td>
<td>10.2%</td>
<td>1.3%</td>
<td>-2.4%</td>
<td>-0.8%</td>
<td>-0.2%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>19</td>
<td>-9.3%</td>
<td>7.4%</td>
<td>8.1%</td>
<td>-3.5%</td>
<td>-2.1%</td>
<td>-0.5%</td>
<td>-0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>20</td>
<td>-10.9%</td>
<td>9.2%</td>
<td>7.5%</td>
<td>-3.2%</td>
<td>-1.9%</td>
<td>-0.5%</td>
<td>-0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>21</td>
<td>-6.0%</td>
<td>13.2%</td>
<td>-4.2%</td>
<td>-2.4%</td>
<td>-0.5%</td>
<td>-0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>22</td>
<td>-8.1%</td>
<td>14.5%</td>
<td>-2.6%</td>
<td>-2.9%</td>
<td>-0.7%</td>
<td>-0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>X</td>
<td>-0.1%</td>
<td>6.8%</td>
<td>3.7%</td>
<td>-2.1%</td>
<td>-5.5%</td>
<td>-1.4%</td>
<td>-1.1%</td>
<td>-0.3%</td>
<td>-0.1%</td>
</tr>
</tbody>
</table>

TABLE 4. The Difference Between Expected Number and Actual Number of Recombination Events Per Chromosome
Table 5 and FIG. 7 are comparisons of the observed recombination frequencies of chromosome 7 and the X chromosome. Originally, the X-DNA Inheritance Project (which became this Recombination Project) was created to examine the inheritance of the X chromosome (size = 196) versus the inheritance of chromosome 7 (size = 187), since the two chromosomes are roughly the same size. As suggested by the data, the X chromosome may recombine less often than the chromosome, despite being slightly larger.

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Avg</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome 7</td>
<td>0</td>
<td>2.172</td>
<td>5</td>
</tr>
<tr>
<td>X Chromosome</td>
<td>0</td>
<td>1.656</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 5. Comparison of Observed Frequencies for Chromosome 7 and the X Chromosome.

<table>
<thead>
<tr>
<th>Number of Recombination Events</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome 7</td>
<td>22</td>
<td>55</td>
<td>74</td>
<td>64</td>
<td>27</td>
<td>8</td>
<td>250</td>
</tr>
<tr>
<td>X Chromosome</td>
<td>35</td>
<td>86</td>
<td>77</td>
<td>39</td>
<td>8</td>
<td>5</td>
<td>250</td>
</tr>
</tbody>
</table>

FIG. 7. Comparison of Observed Frequencies for Chromosome 7 and the X Chromosome.

FIGS. 8-30 are graphs of actual versus expected number of recombination events for each of the autosomes and the X chromosome. The data suggests that for most of the chromosomes, there is more recombination than would be expected based solely on the Poisson distribution model.
ACKNOWLEDGEMENTS

I would like to thank Andrew Millard and Ann Turner for their suggestion and instructions in the ISOGG Facebook group (https://www.facebook.com/groups/isogg) to include the expected recombination distributions for the chromosomes.

I would also like to thank Curtis Rogers and John Olson, the founders of GEDmatch. Without GEDmatch, this analysis would have been much more complicated, and nearly impossible.

Lastly, and most importantly, I would like to thank the hundreds of genetic genealogists who volunteered their time and GEDmatch kit numbers to the Recombination Project. Without them, this research would not be possible.

REFERENCES

FIG. 8

Chromosome 1

Number of Recombination Events

Actual Expected
Chromosome 2

Number of Recombination Events

- **Actual**
- **Expected**

FIG. 9
Chromosome 3

Number of Recombination Events

<table>
<thead>
<tr>
<th>Number</th>
<th>Actual</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.8%</td>
<td>2.8%</td>
</tr>
<tr>
<td>1</td>
<td>10.6%</td>
<td>0.0%</td>
</tr>
<tr>
<td>2</td>
<td>23.8%</td>
<td>2.8%</td>
</tr>
<tr>
<td>3</td>
<td>27.6%</td>
<td>2.0%</td>
</tr>
<tr>
<td>4</td>
<td>26.7%</td>
<td>5.0%</td>
</tr>
<tr>
<td>5</td>
<td>26.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>6</td>
<td>18.0%</td>
<td>1.9%</td>
</tr>
<tr>
<td>7</td>
<td>11.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>8</td>
<td>5.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
FIG. 11
FIG. 12

Chromosome 5

Number of Recombination Events

Actual | Expected

0 | 7.2% | 0.0%
1 | 12.3% | 12.3%
2 | 25.8% | 27.2%
3 | 27.2% | 27.0%
4 | 24.8% | 18.8%
5 | 18.8% | 18.8%
6 | 15.6% | 9.9%
7 | 4.8% | 4.1%
8 | 1.6% | 1.4%

FIG. 13
FIG. 14
FIG. 15

Chromosome 8

Number of Recombination Events

Actual | Expected

0 | 7.2% | 0.0%
1 | 18.4% | 5.0%
2 | 33.2% | 10.0%
3 | 33.2% | 15.0%
4 | 26.0% | 20.0%
5 | 26.4% | 25.0%
6 | 24.0% | 30.0%
7 | 14.9% | 35.0%
8 | 6.4% | 0.0%
9 | 6.3% | 0.0%
10 | 2.1% | 0.0%
11 | 0.8% | 0.0%
12 | 0.6% | 0.0%
13 | 0.4% | 0.0%
14 | 0.1% | 0.0%
15 | 0.0% | 0.0%
Chromosome 12

Number of Recombination Events

- **Actual**
- **Expected**

FIG. 19
Chromosome 13

Number of Recombination Events

- 0: 17.6%
- 1: 40.4%
- 2: 35.3%
- 3: 23.3%
- 4: 10.2%
- 5: 0.4%
- 6: 0.9%
- 7: 0.0%
- 8: 0.0%

Actual: Blue
Expected: Orange

FIG. 20
Chromosome 16

Number of Recombination Events

- Actual
- Expected

FIG. 23
FIG. 26
FIG. 27
FIG. 28

Chromosome 21

Number of Recombination Events

Actual
Expected
FIG. 29
FIG. 30

PREPRINT

X Chromosome

Number of Recombination Events

- Actual
- Expected

0 1 2 3 4 5 6 7 8

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0%

34.4% 27.6% 27.1% 15.6% 3.2% 0.0% 0.0% 0.0% 0.0%